
From Months to Minutes 
How GE Appliances Brought Docker Into the Enterprise  

Tom Barber – Cloud Computing Technologist  
Brett Luckabaugh – Enterprise Software Architect

GE Appliances
GE Appliances is at the forefront of building
innovative, energy-efficient appliances that
improve people’s lives.
• Headquartered in Louisville, KY
• $5 Billion+ in revenue
• 12,000+ employees

 geappliances.com

http://www.geappliances.com

Our Team

Byron Guernsey Ryan GrothouseKeenan Gizzi

Allan Clark Priya Ramaswamy Eric SageJason Burks

Kevin PriceJustin Roberts

James Strong

Tom Barber

Brett Luckabaugh

About as enterprise IT as you can get…

Open
project
ticket

1 day

Meet with
Project
leader

3 days

Open infra
tickets

3 days

Infra manually built

1 week

Infra audited

1 week

Mistakes / rework

2 weeks

6 weeks!

Software/app
configured

1 week

Repeatable Reproducible

I’ll have 1 cloud please…

• Mid 2012: Formation of a cloud focused team with an
agile culture

• Goals: Automate Infrastructure, Modernize Paradigm

• Leveraged Puppet

• 1 year to self-service IaaS solution

That’s a little more like it…

Request VM from
portal

15 minutes
Software/app configured

1 week

Mistakes / rework

2 weeks

3 weeks

Repeatable Reproducible

Good start... Now what?

• 2013: Improve IaaS

• Exploring self-service application platform
(PaaS) automation

• Leverage Puppet as our PaaS toolset

• App owners develop and contribute to puppet
modules

Eh…maybe not so much

• Terrible rate of adoption
- High barrier to entry for app owners
- Reluctant to learn or write Puppet despite industry training
- Highly heterogeneous environment with proprietary apps

• Our Team – The Bottleneck
• Generic Builds

- Avoiding automation
- Manually configured environments -> snowflakes
- Access and privilege restrictions
- Tickets and waiting
- No way to quickly replicate environments

It’s not you…it’s me

• Early 2014 - Our team was having success with
Puppet for IaaS and DBaaS

• However, our larger organization was not
having success using Puppet for self-service
PaaS

• But where do we go from here?

What about this Docker…

• Started at DockerCon 2014
• Docker + Mesosphere - August 2014

- Docker
• High portability

• Lower barrier to entry -> possibly drive greater adoption? – if
you can use a shell, you can grasp a Dockerfile

- Mesosphere
• Fast deployments, scheduling of tasks, scaling, management

of containers, self-healing/fault tolerant, simplification of
datacenter management

Our self-service gap

• Process gap between Docker and our Users
- No shell access to Docker

- Can’t deploy Docker from Marathon UI

- Users not going to build API calls

- Lets not just turn everyone loose on the full API

• How do we bridge that Gap?
- Looked for tools in August 2014, found none that

really met our needs

What’s Voyager?

• Web application to bridge the gap
• Three person team developed initial MVP version in

2 weeks
• MVP features:

- Automated Docker builds without shell access
- Images built from GitHub repositories
- Configurable RESTful service discovery/load balancing
- UI and APIs to tie it all together

• UI – ease of use for all
• APIs – enable continuous integration

HAProxy

I can haz DevOps?

Write Dockerfile

< 30 minutes

Request in Voyager

30 seconds

Repeatable

Reproducible

I think our compliance lead just exploded…

• New concept of immutable infrastructure
- ITIL/Compliance

- How do I ssh? Which Server?

- What do I do if my app instances are having problems?

• Education gap on Docker principals
• Highly heterogeneous environment

- How do I support everything, but do it well?

• Security
- Freedom to put whatever in container?

It’s all about that app…

• A focus shift from infrastructure to app
- ITIL/Compliance

• Policies and processes historically geared towards infrastructure

• Must shift to the app in this model

• Provide Education
- Help users differentiate images/containers, encourage

environment variable configuration, best practices

• Adding features constantly, but carefully
- Highly heterogeneous environment

• Focus on being really good at running Docker containers

• Balance accommodating everything with keeping it simple

Dude…where's my server?

• How do I ssh? Which Server?
- No shell is an adjustment

- External log shipping provides insight

- Encourage new mindset with uneasy app owners

• What do I do if my app instances are having
problems?

- Break our old habits of server hugging

- Just throw bad ones away and replace

- Cheapening of app delivery enables this

Bro…it’s probably fine

• Security
- Double edged sword - freedom vs. control

• Encourage best practices

• Education

• Minimize container footprint/attack vectors

• Shift/decentralize security responsibility to app teams

• App teams take over patching

So does it work?

• Benefits
- Instant scalability

- 14x density

• User feedback on usability is positive
• Docker adoption rates are high

- Currently running 350+ apps = 800+ containers, and growing daily

- Our most critical applications are running in Docker

• Mesosphere + Docker = stable and outage resilient
• Flexibility

- Supports legacy applications well

- Enables modern practices - micro-services and continuous integration

1954 – GE Appliance Park – First non-
government owned computer - Univac-1

Serial Number 8

Fast forward 61 years…

• Same data center, slightly different hardware

• Ongoing project to move apps to new private
and public clouds

• Planned exit strategy -> multiple years

• With Docker in the fold?
- Completed so far 45%+ in ~4 months

So where do we go next?

• Broad Open Issues
- Windows support?

- Persistent storage?

- Networking (SDN containers)?

• Organizational Goals
- Oracle ERP in Docker?

- Drive density - 1000’s of containers per blade

- Too many load balancers -> containerize -> improve service
discovery

- Honeybadger - Multi-cloud spanning/support

- Pushing Docker’s portability to its logical conclusion

Thank you
Tom Barber
thomas.barber@ge.com

Brett Luckabaugh
brett.luckabaugh@ge.com

@barberta2 @OverflownStack

