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GE Appliances
GE Appliances is at the forefront of building 
innovative, energy-efficient appliances that 
improve people’s lives. 
• Headquartered in Louisville, KY 
• $5 Billion+ in revenue 
• 12,000+ employees 

  geappliances.com 

http://www.geappliances.com
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About as enterprise IT as you can get…

Open 
project 
ticket

1 day

Meet with 
Project 
leader

3 days

Open infra 
tickets

3 days

Infra manually built

1 week

Infra audited

1 week

Mistakes / rework

2 weeks

6 weeks!

Software/app  
configured

1 week

Repeatable  Reproducible



I’ll have 1 cloud please…

• Mid 2012: Formation of a cloud focused team with an 
agile culture 

• Goals: Automate Infrastructure, Modernize Paradigm 

• Leveraged Puppet 

• 1 year to self-service IaaS solution



That’s a little more like it…

Request VM from 
portal

15 minutes
Software/app configured

1 week

Mistakes / rework

2 weeks

3 weeks

Repeatable  Reproducible



Good start... Now what?

• 2013: Improve IaaS 

• Exploring self-service application platform 
(PaaS) automation 

• Leverage Puppet as our PaaS toolset 

• App owners develop and contribute to puppet 
modules



Eh…maybe not so much

• Terrible rate of adoption 
- High barrier to entry for app owners 
- Reluctant to learn or write Puppet despite industry training  
- Highly heterogeneous environment with proprietary apps 

• Our Team – The Bottleneck 
• Generic Builds 

- Avoiding automation 
- Manually configured environments -> snowflakes 
- Access and privilege restrictions 
- Tickets and waiting 
- No way to quickly replicate environments



It’s not you…it’s me

• Early 2014 - Our team was having success with 
Puppet for IaaS and DBaaS 

• However, our larger organization was not 
having success using Puppet for self-service 
PaaS 

• But where do we go from here?



What about this Docker…

• Started at DockerCon 2014 
• Docker + Mesosphere - August 2014 

- Docker 
• High portability 

• Lower barrier to entry -> possibly drive greater adoption? – if 
you can use a shell, you can grasp a Dockerfile 

- Mesosphere 
• Fast deployments, scheduling of tasks, scaling, management 

of containers, self-healing/fault tolerant, simplification of 
datacenter management



Our self-service gap

• Process gap between Docker and our Users 
- No shell access to Docker 

- Can’t deploy Docker from Marathon UI 

- Users not going to build API calls 

- Lets not just turn everyone loose on the full API 

• How do we bridge that Gap? 
- Looked for tools in August 2014, found none that 

really met our needs





What’s Voyager?

• Web application to bridge the gap 
• Three person team developed initial MVP version in 

2 weeks 
• MVP features: 

- Automated Docker builds without shell access 
- Images built from GitHub repositories 
- Configurable RESTful service discovery/load balancing 
- UI and APIs to tie it all together 

• UI – ease of use for all 
• APIs – enable continuous integration



HAProxy











I can haz DevOps?

Write Dockerfile

< 30 minutes

Request in Voyager

30 seconds

Repeatable 

Reproducible



I think our compliance lead just exploded…

• New concept of immutable infrastructure 
- ITIL/Compliance 

- How do I ssh? Which Server? 

- What do I do if my app instances are having problems? 

• Education gap on Docker principals 
• Highly heterogeneous environment 

- How do I support everything, but do it well? 

• Security 
- Freedom to put whatever in container?



It’s all about that app…

• A focus shift from infrastructure to app 
- ITIL/Compliance 

• Policies and processes historically geared towards infrastructure 

• Must shift to the app in this model 

• Provide Education 
- Help users differentiate images/containers, encourage 

environment variable configuration, best practices 

• Adding features constantly, but carefully 
- Highly heterogeneous environment 

• Focus on being really good at running Docker containers 

• Balance accommodating everything with keeping it simple



Dude…where's my server?

• How do I ssh? Which Server? 
- No shell is an adjustment 

- External log shipping provides insight 

- Encourage new mindset with uneasy app owners 

• What do I do if my app instances are having 
problems? 

- Break our old habits of server hugging 

- Just throw bad ones away and replace 

- Cheapening of app delivery enables this



Bro…it’s probably fine

• Security 
- Double edged sword - freedom vs. control 

• Encourage best practices 

• Education 

• Minimize container footprint/attack vectors 

• Shift/decentralize security responsibility to app teams 

• App teams take over patching



So does it work?

• Benefits 
- Instant scalability 

- 14x density 

• User feedback on usability is positive 
• Docker adoption rates are high 

- Currently running 350+ apps = 800+ containers, and growing daily 

- Our most critical applications are running in Docker 

• Mesosphere + Docker = stable and outage resilient 
• Flexibility 

- Supports legacy applications well 

- Enables modern practices - micro-services and continuous integration



1954 – GE Appliance Park – First non-
government owned computer - Univac-1 

Serial Number 8



Fast forward 61 years…

• Same data center, slightly different hardware 

• Ongoing project to move apps to new private 
and public clouds 

• Planned exit strategy -> multiple years 

• With Docker in the fold? 
- Completed so far 45%+ in ~4 months



So where do we go next?

• Broad Open Issues 
- Windows support? 

- Persistent storage? 

- Networking (SDN containers)? 

• Organizational Goals 
- Oracle ERP in Docker? 

- Drive density - 1000’s of containers per blade 

- Too many load balancers -> containerize -> improve service 
discovery 

- Honeybadger - Multi-cloud spanning/support 

- Pushing Docker’s portability to its logical conclusion
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Tom Barber
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